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- . the hydroxy group at the quaternary carbon C6 and the carbon chain at C7. As part of our program toward
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the total synthesis of armatol F, a new stereoselective method for the construction of the C6 and C7 ste-
reocenters has been developed based on chirality-transferring Ireland-Claisen rearrangement. The A-ring
skeleton has also been synthesized from the rearrangement product by a process including ring-closing
olefin metathesis.

© 2010 Elsevier Ltd. All rights reserved.

Armatol F (1, Fig. 1) was isolated from the red alga Chondria ar-
mata by Ciavatta et al. as a polyether triterpene.! It has a solitary
oxepane (A-ring), a fused tricyclic ether moiety (BCD-ring), and
bromo substituents at both ends of the molecule. Partial relative
configurations of the A-ring and the BCD-ring have been deter-
mined by NMR analysis, though the relative relationship between
the A and the BCD-rings and the configuration at C10 is unclear.
The partial absolute stereochemistry of the A-ring can be deduced
as shown in Figure 1 by analogy with that of armatol A, a congener
of 1.!

It is remarkable that the hydroxy group at the C6 quaternary
carbon in the A-ring of 1 is in a cis-relationship to the carbon chain
at C7, because the cis-configuration is unusual among the natural
oxepanes possessing similar substituents.? The cis-fusion between
the C and D rings of 1 is also unusual for natural fused polycyclic
ethers.>*

The remarkable structural characteristics of 1 prompted us to
initiate a program toward the total synthesis and determination
of full absolute configuration of 1. As part of the program, the syn-
thesis of the A-ring has been studied. We describe herein the ster-
eoselective construction of the C6 and C7 stereocenters based on
chirality-transferring Ireland-Claisen rearrangement and the for-
mation of the A-ring skeleton.

The outline of the synthesis of the A-ring skeleton (2), an impor-
tant synthetic intermediate for the full functionalized A-ring, is Chirality-Transferring
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part of 2. The seven-membered ring was formed by employing the
ring-closing olefin metathesis of diene 3. Applying the Ireland-
Claisen rearrangement to ester 6 provided the congested ether 4
in a chirality transferring fashion via a presumed chair-shaped
transition state derived from a Z-ketene silyl acetal intermediate
(5).>® The success of the stereoselective rearrangement strongly
relied on the stereoselective construction of the substrate’s
trisubstituted E-enol ether group and the adjacent chiral center
C4, which originated from alcohol 7. The counterpart carboxylic
acid 8 included a 2-methyl-3-bromo-2-butyl group as a masked
2-methyl-3-buten-2-yl group.

The carboxylic acid 8 was prepared as a racemate by NBS-
mediated bromoetherification of 2-methyl-2-butene with methyl
glycolate (9) without using a solvent and subsequent basic hydro-
lysis in 54% overall yield based on 9 (Scheme 2).”

Synthesis of alcohol 7 from 5,6-0-isopropylidene-L-gulonic acid
v-lactone (11) is shown in Scheme 3.2 Oxidative cleavage of 11°
followed by the addition of propynyl lithium derived from 1-bro-
mo-1-propene gave alcohol 13 as a mixture of diastereomers in
33% overall yield. The alcohol was oxidized with Dess—-Martin peri-
odinane to afford acetylene ketone 14 in 94% yield.'° The hetero-
Michael reaction of 14 with an excess amount of 4-methoxyphenol
in the presence of PBuz and N,N-dimethylbenzylamine furnished E-
enol ether ketone 15 as a single geometrical isomer in 46% yield.!!
The absence of PBus or N,N-dimethylbenzylamine resulted in a
poor yield of 15. The mechanistic details are unknown at present.
The diastereoselective reduction of 15, assisted by the neighboring
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2,2-dimethyl-1,3-dioxolan-4-yl group,'?
under Luche conditions.!>14

The enantiomer of 7 (ent-7) was also prepared from 1,2:5,6-
di-O-isopropylidene-p-mannitol (16)'® in a similar manner
(Scheme 4).

The stereoselective construction of the quaternary and tertiary
centers at C6 and C7, respectively, was first examined with ent-7
and 8 (Scheme 5). Esterification of ent-7 with 8, mediated by ED-
CI-HCI and DMAP, smoothly produced ester ent-6, which was sub-
jected to the next reaction immediately after purification because
of its instability. The ester was then treated with LDA followed
by TMSCI at —78 °C, and the resulting ketene silyl acetal was rear-
ranged by warming to ambient temperature to produce carboxylic
acids, which were converted to ent-4 and 17 by methylation with

produced 7 in 92% yield
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TMS-diazomethane. During optimization of reaction conditions to
obtain the desired ent-4 exclusively, we observed a significant sol-
vent effect on the selectivity of ent-4 and 17, shown in the inset ta-
ble in Scheme 5.'® When THF or Et,0 was used as solvent, the ratio
of ent-4 to 17 was low (1.3-1.4:1) (entries 1 and 2). Treatment of a
solution of ester ent-6 in toluene with a solution of LDA in THF en-
hanced the combined yield (78% over three steps) and the ratio of
ent-4 (5:1) (entry 3). Exclusion of THF from the reaction media by
use of a solution of LDA in toluene produced ent-4 predominantly
(=20:1), but in moderate yield (39% over three steps) (entry 4).
Since the decreased yield was attributable to the instability of an
enolate intermediate from ent-6 in toluene, the time period for
deprotonation from the substrate was shortened to avoid decom-
position of the enolate. As a result, a 5-min treatment of ent-6 with
LDA effectively furnished ent-4 in good yield (66% over three steps)
with high selectivity (13:1) (entry 5).'° The optimized conditions
were applied to natural enantiomer 7, and the desired 4%° was ob-
tained exclusively in 52% yield over three steps. Thus, the stereose-
lective construction of the quaternary and tertiary stereocenters at
C6 and C7, respectively, of the A-ring of 1 was achieved.

The construction of the seven-membered ring from 4 is illus-
trated in Scheme 6. The 2,2-dimethyl-1,3-dioxolan-4-yl group of
4 was transformed to a hydroxymethyl group via acidic hydrolysis,
oxidative diol cleavage, and Luche reduction (97% over three
steps). The protection of the resulting 17 as a TIPS ether followed
by reduction of the ester group afforded alcohol 18 (90% over
two steps). After THP protection of 18, the resulting THP ether
was treated with ¢t-BuOK in a 3:1 DMSO-THF solution to give a
mixture of a dehydrobrominated product and its desilylated alco-
hol (19).” Complete desilylation of the mixture with TBAF provided
19 in good overall yield (73% over three steps). The allyl alcohol
group of 19 was then converted to a terminal alkenyl group accord-
ing to Movassaghi’s procedure.?! Substitution of the hydroxyl
group of 19 with N-isopropylidene-N'-(2-nitrophenylsulfo-
nyl)hydrazide (IPNBSH) under Mitsunobu conditions?? in the pres-
ence of an excess amount of 1-hexene as a scavenger of free
diimide,®¢ followed by in situ hydrolysis of the hydrazone group,
induced spontaneous elimination of a sulfinate and reductive ole-
fin migration to produce diene 3 quantitatively. Ring-closing olefin
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metathesis of 3 in the presence of second-generation Grubbs’ cat-
alyst?> smoothly furnished 224?° in excellent yield (96%), thereby
completing the stereoselective construction of the A-ring skeleton
of 1. Similarly, the enantiomer of 2 (ent-2) was synthesized from
ent-4 (overall 54%). Both 2 and ent-2 would be available for the
synthesis of 1 and its stereoisomers aiming at determination of full
absolute stereochemistry.

In conclusion, the A-ring skeleton (2) of armatol F (1), which has
unique configurations at C6 and C7 among natural oxepanes, has
been constructed based on chirality-transferring Ireland-Claisen
rearrangement and ring-closing olefin metathesis. Transformation
of 2 to the full functionalized A-ring (22) is currently underway via
a route including dihydroxylation, selective tosylation, reduction
by Robins’ procedure,?® and installation of a bromo group (Scheme
7). At present, alcohol 21 was obtained stereoselectively as a pre-
liminary result.?® Further studies toward the total synthesis of
armatol F are in progress in this laboratory, specifically the stereo-
selective installation of a bromo group at C3 in the A-ring and the
construction of the BCD-ring.
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